• Best customer support

  • Payment via invoice or credit card

  • WORLDWIDE EXPRESS SHIPPING

  • Flow Control
    • Baoding Shenchen
    • Bartels
    • DK Infusetek
    • Elveflow
    • Harvard Apparatus
    • HNP Mikrosysteme
    • Ismatec
    • Jun-Air
    • LabTech
    • Longer
    • Masterflex
    • New Era
  • Chips & Microfabrication
    • BlackHole Lab
    • Droplet Genomics
    • Grace Bio-Labs
    • iBioChips
    • IVTech
    • KemLab
    • MesoBioTech
    • microfluidic ChipShop
    • Micronit
    • SynVivo
  • Imaging
    • Fastec Imaging
    • Nikon
    • Phantom (Ametek)
    • Photron
    • Pixelink
    • Zeiss
  • Accessories
    • BD
    • Diba
    • Elveflow
    • Emulseo
    • Hamilton
    • Saint-Gobain
  • Sensors
    • Elveflow
    • Sensirion
    • Zimmer & Peacock
  • Valves
    • Bürkert
    • Elveflow
    • Memetis
  • Contact Us
  • Register or Sign in
0
Darwin Microfluidics
  • CHIPS & BIO
    Droplet Generators
    • Flow Focusing
    • T-Junction
    • Co-Flow
    • Drop-seq (scRNA-seq)
    Micromixers
    Organ-on-a-Chip
    • Chips
    • Bundles
    • Accessories
    Cell Sorting / Trapping
    Enhanced Oil Recovery
    Flow Cells
    Chip Holders
  • FLOW CONTROL
    Syringe Pumps
    • Syringe Pump Systems
    • OEM Modules
    • Syringes
    • Accessories
    Pressure Control
    • Pressure Controllers
    • Reservoirs & Accessories
    Peristaltic Pumps
    • Systems & Drives
    • Pump Heads
    • Tubing
    • Accessories
    Miniature Pumps
    • Gear Pumps
    • Piezo Pumps
    Valves
    • Solenoid Valves
    • Miniature SMA Valves
    • Manual Valves
    • Rotary Valves
    Sensors
    • Flow Sensors
    • Pressure Sensors
    Compressors & Vacuum Pumps
  • IMAGING
    Cameras
    • USB Cameras
    • High-speed Cameras
    Microscopes
    • Inverted Microscopes
    • Stereo Microscopes
  • ACCESSORIES
    Bubble Traps
    Tanks & Reservoirs
    Tubing
    • PTFE, PEEK, FEP Tubing
    • Silicone & Tygon Tubing
    • Tubing with stoppers
    Assortment Kits
    Syringes & Needles
    • Syringes
    • Needles & Couplers
    Oils & Surfactant
    Surface Treatments
    Fittings & Connectors
    • Threaded Fittings
    • Luer Fittings
    • Barbed Fittings
    • Sleeves & Ferrules
    • Splitters & Manifolds
    Filters
    Check Valves
    Microfabrication
    • Soft-lithography Systems
    • PDMS
    • Photoresists
    • Wafers
    • Punchers
    • Chip Prototyping Tools
(+33) 189 197 051 contact@darwin-microfluidics.com
Browse By Brand
  • Flow Control
    • Baoding Shenchen
    • Bartels
    • DK Infusetek
    • Elveflow
    • Harvard Apparatus
    • HNP Mikrosysteme
    • Ismatec
    • Jun-Air
    • LabTech
    • Longer
    • Masterflex
    • New Era
  • Chips & Microfabrication
    • BlackHole Lab
    • Droplet Genomics
    • Grace Bio-Labs
    • iBioChips
    • IVTech
    • KemLab
    • MesoBioTech
    • microfluidic ChipShop
    • Micronit
    • SynVivo
  • Imaging
    • Fastec Imaging
    • Nikon
    • Phantom (Ametek)
    • Photron
    • Pixelink
    • Zeiss
  • Accessories
    • BD
    • Diba
    • Elveflow
    • Emulseo
    • Hamilton
    • Saint-Gobain
  • Sensors
    • Elveflow
    • Sensirion
    • Zimmer & Peacock
  • Valves
    • Bürkert
    • Elveflow
    • Memetis
  • Get a Quote
  • 0
  • CHIPS & BIO
    Back
    Droplet Generators
    • Back
    • Flow Focusing
    • T-Junction
    • Co-Flow
    • Drop-seq (scRNA-seq)
    Micromixers
    Organ-on-a-Chip
    • Back
    • Chips
    • Bundles
    • Accessories
    Cell Sorting / Trapping
    Enhanced Oil Recovery
    Flow Cells
    Chip Holders
  • FLOW CONTROL
    Back
    Syringe Pumps
    • Back
    • Syringe Pump Systems
    • OEM Modules
    • Syringes
    • Accessories
    Pressure Control
    • Back
    • Pressure Controllers
    • Reservoirs & Accessories
    Peristaltic Pumps
    • Back
    • Systems & Drives
    • Pump Heads
    • Tubing
    • Accessories
    Miniature Pumps
    • Back
    • Gear Pumps
    • Piezo Pumps
    Valves
    • Back
    • Solenoid Valves
    • Miniature SMA Valves
    • Manual Valves
    • Rotary Valves
    Sensors
    • Back
    • Flow Sensors
    • Pressure Sensors
    Compressors & Vacuum Pumps
  • IMAGING
    Back
    Cameras
    • Back
    • USB Cameras
    • High-speed Cameras
    Microscopes
    • Back
    • Inverted Microscopes
    • Stereo Microscopes
    • Back
    • Back
  • ACCESSORIES
    Back
    Bubble Traps
    Tanks & Reservoirs
    Tubing
    • Back
    • PTFE, PEEK, FEP Tubing
    • Silicone & Tygon Tubing
    • Tubing with stoppers
    Assortment Kits
    Syringes & Needles
    • Back
    • Syringes
    • Needles & Couplers
    Oils & Surfactant
    Surface Treatments
    Fittings & Connectors
    • Back
    • Threaded Fittings
    • Luer Fittings
    • Barbed Fittings
    • Sleeves & Ferrules
    • Splitters & Manifolds
    Filters
    Check Valves
    Microfabrication
    • Back
    • Soft-lithography Systems
    • PDMS
    • Photoresists
    • Wafers
    • Punchers
    • Chip Prototyping Tools
  • Call
  • Contact
  • Store info

172 rue de Charonne
Bâtiment B1, 1er étage
Paris, France

  • Darwin MicrofluidicsHome
  • Reviews
  • The Most Used Microfabrication Techniques in Microfluidics

The Most Used Microfabrication Techniques in Microfluidics

  • Reviews
  • 30 Sep, 2019
  • Posted by: Gianpiero Lazzari

There is no microfluidics without microfabrication. Since microfluidics releases with the control of fluids through devices such as DNA chips, Lab-on-Chips and Organ-on-Chips in a sub-millimeter scale, microfabrication is essential for the creation of a geometrically defined patterns.   

There are many microfabrication techniques and they originate from the industry of microelectronics for the microfabrication of semiconductors, circuits and Micro Electro-Mechanical Systems (MEMS). In microfluidics, micropatterning represents the specific groups of techniques involved in the manufacturing of most devices [1].

The entire microfabrication process of a common micropatterning is represented in figure 1 and consists in the combination of two lithography techniques, photolithography and soft-lithography, for the fabrication of a polydimethylsiloxane (PDMS) device.

micropatterning process

Fig. 1: Representation of the entire microfabrication process for a microfluidic PDMS chip. Adapted with permission from ref. [2]. Copyright 2014 Springer Nature.

 

Photolithography, known also as optical lithography, is the key process for microstructure scaffold fabrication. Through the photolithography is possible to create a geometrically defined pattern in a layer of an energy-definable polymer called photoresist. The most widely used photolithography technique employs the UV light to transfer a specific pattern from a photomask to the UV light-sensitive photoresist laid on a rigid substrate.

Usually, with the most common clean-room facility, photolithography is used to prepare molds with negative relief patterns of SU-8 photoresist on a silicon (Si) wafer. The SU-8 is an acid-catalyzed negative photoresist often used for the microfabrication of structures with high aspect/ratio [3]. As schematized in figure 2, a uniform film of SU-8 is spin-coated on a Si wafer, then a photomask with a microscale pattern is overlaid and this assembly is exposed to the UV light to transfer the pattern. The photoresist contains indeed highly branched epoxy groups (Fig. 3a) and the UV activates the photolytic reaction by producing the photoacid initiator (Fig. 3b) able to protonate the SU-8 epoxides and start the polymerization (Fig. 3c). The desired pattern is finally developed by dissolving the uncross-linked photoresist: the precise control of the process allows to achieve the desired micro- and nanoarchitecture in term of dimension, depth and shape. The obtained SU-8 mold presents the inverse pattern of the final device structure and will be used in the following step of soft-lithography.

Fig. 2: Fabrication of a SU-8 mold on Si wafer through photolithography.

 

 SU-8 photoresist

Fig. 3: SU-8 crosslinking process. Adapted with permission from ref. [4]. Copyright 2015 Springer Nature.

 

Soft-lithography, also called replica molding, uses elastomeric polymers to create stamps complementary to a mold bearing the negative design. This patterning method has several advantages such as lower costs, high throughput, easy setup and good pattern resolution [1].

Once the microfabrication is done by photolithography, the master mold can be used several times to produce the polymer stamps and PDMS, in particular, is the most common elastomer widely employed to create microfluidic devices which find application in different research fields from biology to chemistry and physic.   

Figure 4 shows how the PDMS is used in the replica molding to fabricate chips from a SU-8 patterned mold (previously created by photolithography). In particular, a mixture of PDMS base and curing agent is generally poured on the mold and degassed. The PDMS stamp is separated from the mold only after the process of polymerization through a crosslinking at 60 °C for at least 2 h. Finally, in order to obtain the final microfluidic device, the PDMS stamp can be assembled for example with a glass support through a covalent bonding by using the oxygen plasma treatment.

softlithography

Fig. 4: Fabrication of a PDMS device on SU-8 mold through soft-lithography.

 

 

References

[1] Onur, S. et al. 3 - Micro- and nanopatterning of biomaterial surfaces. Fundamental Biomaterials: Metals, Woodhead Publishing, 2018: p. 67-78.

[2] Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32: p. 760.

[3] Pinto, C.V., et al., Optimized SU-8 Processing for Low-Cost Microstructures Fabrication without Cleanroom Facilities. Micromachines, 2014. 5(3).

[4] Lima, R.S., et al., Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips. Scientific Reports, 2015. 5: p. 13276.

 

 

 

 

 

 

 

  • Share
  • Tweet
welcome to our blog!
Our team keeps you informed of the latest news at Darwin Microfluidics. We also write some nice reviews and tools to guide you through the vast world of microfluidics!
Categories
  • News
  • Reviews
  • Tutorials
  • Tools
Recent posts
Hardness Shore A vs. Shore D
06 Jul, 2021
Tygon Tubing Hardness Table
06 Jul, 2021
Tygon tubing chemical compatibility comparison chart
05 Jul, 2021
Tags
  • All
  • cell culture
  • microfluidic chip
  • new products

Recently Viewed

Ismatec - Darwin Microfluidics
Elveflow - Darwin Microfluidics
Microfluidic ChipShop - Darwin Microfluidics
Zeiss - Darwin Microfluidics
Harvard Apparatus - Darwin Microfluidics
Cole-Parmer - Darwin Microfluidics
Sign up to our Newsletter

...for latest news in microfluidics.

Darwin Microfluidics
Got questions? Call us! (+33) 189 197 051
Contact info Darwin Microfluidics
40 rue Alexandre Dumas
75011 Paris
France
  • Social
Blog
  • News
  • Reviews
  • Tutorials
  • Tools
Information
  • Bank Details
  • General Terms & Conditions
  • Delivery Terms
  • Payment Terms
The Company
  • About us
  • Contact us
  • Terms of Service
  • Refund policy

© 2023 Darwin Microfluidics. All Rights Reserved

  • Payment

Product successfully added to your Shopping Cart

Request a Quote
Proceed to Checkout